Source code for pyscses.matrix_solver

import numpy as np
from scipy.sparse import dia_matrix, diags, spdiags, csc_matrix
from scipy.sparse import linalg 
from scipy.constants import epsilon_0

[docs]class MatrixSolver: """ Contains the functions for the finite difference methods used to solve the Poisson-Boltzmann equation on a one-dimensional grid. """ def __init__( self, grid, dielectric, temp, boundary_conditions='dirichlet' ): """ Create a MatrixSolver object. Args: grid (object): Grid class object which contains the information regarding the calculation grid. dielectric (float): dielectric constant for the studied material. temp (float): Calculation temperature. boundary_conditions (str): Specify the boundary conditions for the matrix solver. Allowed values are `dirichlet` and `periodic`. Default = `dirichlet`. Returns: None """ self.grid = grid self.epsilon = dielectric * epsilon_0 self.temp = temp allowed_boundary_conditions = [ 'dirichlet', 'periodic' ] if boundary_conditions not in allowed_boundary_conditions: raise ValueError( boundary_conditions ) self.boundary_conditions = boundary_conditions self.A = self.laplacian_sparse()
[docs] def laplacian_new_fullmatrix( self ): """ Creates the full tridiagonal matrix used to solve the Poisson-Boltzmann equation using a finite element method. deltax is taken as the width of each grid point, from the center point between itself and the next grid point on either side. Using a finite difference approximation the diagonal becomes -2.0 / (deltax_1 * deltax_2 ), the upper diagonal becomes 2.0 / ( ( delta_x1 + delta_x2 ) * delta_x2 ) and the lower diagonal becomes 2.0 / ( ( delta_x1 + delta_x2 ) * delta_x1 ). If boundary_conditions are 'periodic', the corner elements of the matrix are filled. Args: None Returns: A (matrix): Full tridiagonal matrix. """ deltax = self.grid.x[1:] - self.grid.x[:-1] deltax = np.insert( deltax, len(deltax), self.grid.limits_for_laplacian[0] ) deltax = np.insert( deltax, 0, self.grid.limits_for_laplacian[1] ) delta_x1 = deltax[:-1] delta_x2 = deltax[1:] diag = -2.0 / (delta_x1 * delta_x2) ldiag = 2.0 / ( ( delta_x1 + delta_x2 ) * delta_x1 ) udiag = 2.0 / ( ( delta_x1 + delta_x2 ) * delta_x2 ) A = diags( [ diag, udiag[:-1], ldiag[1:] ], [ 0, 1, -1 ] ).A if self.boundary_conditions is 'periodic': A[0,-1] = ldiag[0] A[-1,0] = udiag[-1] return A
[docs] def laplacian_sparse( self ): """ Creates a sparse matrix from a full matrix by taking only the tridiagonal values. Args: None Returns: A (matrix): Sparse tridiagonal matrix. """ L_sparse = csc_matrix( self.laplacian_new_fullmatrix()) return L_sparse
[docs] def solve( self, phi_old ): """ Uses matrix inversion to solve the Poisson-Boltzmann equation through finite difference methods. The defect mole fractions are calculated from the elctrostatic potential, the charge density is calculated from the defect mole fractions and the elctrostatic potential is then updated using the updated charge density. If boundary_conditions are 'periodic', the charge density is minimised before the matrix inversion. Args: phi_old (array): Electrostatic potential on a one-dimensional grid. Returns: predicted_phi (array): Updated electrostatic potential on a one-dimensional grid. rho (array): Updated charge density on a one-dimensional grid. """ rho = self.grid.rho( phi_old, self.temp ) if self.boundary_conditions is 'periodic': rho_prime = np.sum( rho * self.grid.delta_x ) / np.sum(self.grid.delta_x ) rho -= rho_prime b = -( rho / self.epsilon ) predicted_phi = linalg.spsolve( self.A, b ) return predicted_phi, rho